Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
1.
J Nat Prod ; 87(4): 1013-1022, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483204

RESUMO

Six undescribed and six known bisbenzylisoquinoline alkaloids were isolated from the embryo of Nelumbo nucifera seeds. Their structures were fully characterized by a combination of 1H, 13C NMR, 2D NMR, and HRESIMS analyses, as well as ECD computational calculations. The antiadipogenic activity of 11 alkaloids was observed in a dose-responsive manner, leading to the suppression of lipid accumulation in 3T3-L1 cells. Luciferase assay and Western blot analysis showed that the active alkaloids downregulated peroxisome proliferator-activated receptor gamma (PPARγ, a key antiadipogenic receptor) expression in 3T3-L1 cells. Analysis of the structure-activity relationship unveiled that a 1R,1'S configuration in bisbenzylisoquinoline alkaloids led to a notable enhancement in antiadipogenic activity. The resistance level against lipid accumulation highlighted a consistent pattern with the suppressive effect on the PPARγ expression. These activity results indicate that alkaloids from the embryo of N. nucifera seeds have a potential of antiobesity effects through PPARγ downregulation.


Assuntos
Células 3T3-L1 , Adipogenia , Alcaloides , Regulação para Baixo , Nelumbo , PPAR gama , Sementes , Animais , Sementes/química , Camundongos , Nelumbo/química , Alcaloides/farmacologia , Alcaloides/química , Estrutura Molecular , Regulação para Baixo/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/química , Benzilisoquinolinas/isolamento & purificação , Relação Estrutura-Atividade
2.
Aging (Albany NY) ; 16(7): 5905-5915, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517394

RESUMO

Dysfunction of tight junctions such as zonula occludens protein-1 (ZO-1)-associated aggravation of blood-brain barrier (BBB) permeability plays an important role in the progression of stroke. Cepharanthine (CEP) is an extract from the plant Stephania cepharantha. However, the effects of CEP on stroke and BBB dysfunction have not been previously reported. In this study, we report that CEP improved dysfunction in neurological behavior in a middle cerebral artery occlusion (MCAO) mouse model. Importantly, CEP suppressed blood-brain barrier (BBB) hyperpermeability by increasing the expression of ZO-1. Notably, we found that CEP inhibited the expression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (VEGFR2) in the cortex of MCAO mice. Additionally, the results of in vitro experiments demonstrate that treatment with CEP ameliorated cytotoxicity of human bEnd.3 brain microvascular endothelial cells against hypoxia/reperfusion (H/R). Also, CEP attenuated H/R-induced aggravation of endothelial permeability in bEND.3 cells by restoring the expression of ZO-1. Further study proved that the protective effects of CEP are mediated by inhibition of VEGF-A and VEGFR2. Based on the results, we conclude that CEP might possess a therapeutic prospect in stroke through protecting the integrity of the BBB mediated by the VEGF/VEGFR2/ZO-1 axis.


Assuntos
Benzodioxóis , Benzilisoquinolinas , Barreira Hematoencefálica , Transdução de Sinais , Acidente Vascular Cerebral , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Proteína da Zônula de Oclusão-1 , Animais , Proteína da Zônula de Oclusão-1/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Humanos , Masculino , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Linhagem Celular
3.
Int Immunopharmacol ; 130: 111693, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38428144

RESUMO

Oxidative stress and neuroinflammation are two major causes leading to early brain injury after subarachnoid hemorrhage (SAH). Nuclear factor E2-related factor 2 (Nrf2) is a critical transcription factor that contributes to antioxidant responses. Additionally, Nrf2 could inhibit transforming growth factor beta-activated kinase 1 (TAK1), which plays a vital role in microglial activation-mediated neuroinflammation. Neferine (NE) exhibits considerable protective effects in diverse disease models. However, the detailed effect and mechanism of NE on SAH remain unknown. Our data showed that NE treatment significantly reduced behavior and cognitive impairment, and brain edema in the early period after SAH. In addition, NE mitigated SAH-induced oxidative damage, neuroinflammation, and neural death. Moreover, NE inhibited M1 microglial polarization and enhanced M2 phenotype microglia both in vivo and in vitro. Further investigations revealed that NE enhanced the Nrf2-antioxidant response element (ARE) signaling pathway and suppressed TAK1-NF-κB signaling. In contrast, depletion of Nrf2 by ML385 suppressed Nrf2-ARE signaling, induced TAK1-NF-κB activation, and further promoted M1 microglial polarization. Additionally, ML385 abated the neuroprotective effects of NE against SAH. Notably, LPS also aggravated TAK1-NF-κB activation and reversed the beneficial effects of NE after SAH. In summary, NE provides protection after SAH by inhibiting oxidative stress and modulating microglial polarization through Nrf2 activation and TAK1-NF-κB suppression.


Assuntos
Benzilisoquinolinas , Microglia , Fator 2 Relacionado a NF-E2 , NF-kappa B , Doenças Neuroinflamatórias , Hemorragia Subaracnóidea , Masculino , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Camundongos Endogâmicos C57BL , Microglia/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Fator 2 Relacionado a NF-E2/agonistas , NF-kappa B/metabolismo , Transdução de Sinais , Hemorragia Subaracnóidea/complicações , Modelos Animais de Doenças
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 33-38, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387896

RESUMO

OBJECTIVE: To explore the role of bone marrow mesenchymal stem cells (BMSC),an essential element of the bone marrow microenvironment, in multidrug resistance(MDR) of K562 cells, as well as the reversal effect of tetrandrine (TET) on BMSC-mediated MDR and its potential mechanism. METHODS: A mixed co-culture system and a transwell co-culture system for BMSC and K562 cells were established, and the cells were divided into different groups and treated with daunorubicin (DNR) alone or combined with TET and DNR. The CCK-8 assay was used to detect the proliferation of K562 cells in each group, and the cell inhibition rate was calculated. Cytometric bead array (CBA) was used to detect the expression levels of IFN, IL-2, IL-6 and IL-10 in the supernatant of different groups. RT-qPCR and Western blot were used to detected the expression of STAT3 at mRNA and protein levels, respectively. RESULTS: Compared with K562+DNR group, the inhibition rate of DNR on K562 cell proliferation in K562+BMSC+DNR group was significantly decreased (P < 0.05), while the levels of IL-6 in the culture supernatant and phosphorylated STAT3 in K562 cells were significantly increased (P < 0.05). Compared with K562+BMSC+DNR group, the inhibition rate of DNR on K562 cell proliferation in K562+BMSC+DNR+TET group was significantly increased (P < 0.05), while the level of IL-6 and phosphorylated STAT3 was significantly decreased (P < 0.05). CONCLUSION: BMSC can promote the drug resistance of leukemia cells, and TET may reverse the BMSC-mediated drug resistance via inhibiting IL-6/STAT3 signaling pathway.


Assuntos
Benzilisoquinolinas , Leucemia , Humanos , Interleucina-6 , Resistencia a Medicamentos Antineoplásicos , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Daunorrubicina/farmacologia , Células K562 , Leucemia/tratamento farmacológico , Microambiente Tumoral
5.
Int J Nanomedicine ; 19: 787-803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293606

RESUMO

Background: Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, is a potential candidate for cancer chemotherapy. However, Tet has poor aqueous solubility and a short half-life, which limits its bioavailability and efficacy. Liposomes have been widely utilized to enhance the bioavailability and efficacy of drugs. Methods: In this study, Tet-loaded stealth liposomes (S-LPs@Tet) were prepared by ethanol injection method. Furthermore, physicochemical characterisation, biopharmaceutical behaviour, therapeutic efficacy, and biocompatibility of S-LPs@Tet were assessed. Results: The prepared S-LPs@Tet had an average particle size of 65.57 ± 1.60 nm, a surface charge of -0.61 ± 0.10 mV, and an encapsulation efficiency of 87.20% ± 1.30%. The S-LPs@Tet released Tet in a sustained manner, and the results demonstrated that the formulation remained stable for one month. More importantly, S-LPs significantly enhanced the inhibitory ability of Tet on the proliferation and migration of lung cancer cells, and enabled Tet to escape phagocytosis by immune cells. Furthermore, in vivo studies confirmed the potential for long-circulation and potent tumor-suppressive effects of S-LPs@Tet. Moreover, ex vivo and in vivo safety experiments demonstrated that the carrier material S-LPs exhibited superior biocompatibility. Conclusion: Our research suggested that S-LPs@Tet has potential applications in lung cancer treatment.


Assuntos
Benzilisoquinolinas , Neoplasias Pulmonares , Humanos , Lipossomos , Lipopolissacarídeos , Benzilisoquinolinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico
6.
Clin Respir J ; 18(1): e13729, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286741

RESUMO

BACKGROUND: Asthma associated with obesity is a chronic disease characterized by earlier airway remodeling, severe wheezing, and increased insensitivity to hormone therapy. Reticuline, a bioactive compound of Magnoliae Flos, exerts anti-inflammatory activity and can inhibit neutrophil recruitment. Thus, this study investigated the role of reticuline in obesity-related asthma. METHODS: The BALB/c mice fed a low-fat diet (LFD) and high-fat diet (HFD) were intranasally challenged with house dust mites (HDMs) or ovalbumin (OVA). Reticuline (0.25 mg/kg) was administrated into mice by intragastrical gavage. Airway hyper-responsiveness was examined after the final challenge. Body weight was measured, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected. The number of inflammatory cells in BALF was estimated. Histological changes were assessed by performing hematoxylin-eosin staining, and production of proinflammatory cytokines and IgE was examined by ELISA kits. Related pathways were studied with western blotting. RESULTS: Reticuline suppressed airway resistance and inflammatory infiltration in lung tissue and reduced inflammatory cell recruitment in BALF in obesity mice with asthma. Additionally, the levels of IL-17A, IL-1ß, IL-5, macrophage inflammatory protein 2, and regulated on activation, normal T cell expressed and secreted in the lung were reduced by reticuline. Mechanistically, reticuline inactivated the JAK2/STAT3/SOCS3 and p38 MAPK/NF-κB signaling pathways in obesity-related asthma. CONCLUSION: Reticuline alleviates airway inflammation in obesity-related asthma by inactivating the JAK2/STAT3/SOCS3 and p38 MAPK/NF-κB signaling pathways.


Assuntos
Asma , Benzilisoquinolinas , Janus Quinase 2 , NF-kappa B , Fator de Transcrição STAT3 , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Asma/metabolismo , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Janus Quinase 2/efeitos dos fármacos , Janus Quinase 2/metabolismo , Pulmão/patologia , Camundongos Endogâmicos BALB C , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/uso terapêutico , Transdução de Sinais , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
7.
Blood Adv ; 8(2): 309-323, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-37967356

RESUMO

ABSTRACT: Ca2+/calmodulin-dependent protein kinase II γ (CAMKIIγ) has been identified as a potential target for treating cancer. Based on our previous study of berbamine (BBM) as a CAMKIIγ inhibitor, we have synthesized a new BBM derivative termed PA4. Compared with BBM, PA4 showed improved potency and specificity and was more cytotoxic against lymphoma and leukemia than against other types of cancer. In addition to indirectly targeting c-Myc protein stability, we demonstrated that its cytotoxic effects were also mediated via increased reactive oxygen species production in lymphoma cells. PA4 significantly impeded tumor growth in vivo in a xenograft T-cell lymphoma mouse model. Pharmacokinetics studies demonstrated quick absorption into plasma after oral administration, with a maximum concentration of 1680 ± 479 ng/mL at 5.33 ± 2.31 hours. The calculated oral absolute bioavailability was 34.1%. Toxicity assessment of PA4 showed that the therapeutic window used in our experiments was safe for future development. Given its efficacy, safety, and favorable pharmacokinetic profile, PA4 is a potential lead candidate for treating lymphoma.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Leucemia , Linfoma de Células T , Humanos , Camundongos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Benzilisoquinolinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
Phytother Res ; 38(1): 131-146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37821355

RESUMO

Neuroblastoma and glioblastoma are primary malignant tumors of the nervous system, with frequent relapse and limited clinical therapeutic drugs. The failure of their treatment is due to the tumor cells exhibiting cancer stem-like cells (CSLCs) properties. Octamer binding transcription factor 4 (Oct4) is involved in mediating CSLCs, our previous work found that Oct4-driven reprogramming of astrocytes into induced neural stem cells was potentiated with continuous sonic hedgehog (Shh) stimulation. In this study, we aimed to study the importance of Oct4 and Shh combination in the stemness properties induction of neuroblastoma and glioblastoma cells, and evaluate the anti-stemness effect of dauricine (DAU), a natural product of bis-benzylisoquinoline alkaloid. The effect of Oct4 and Shh co-activation on cancer stemness was evaluated by tumor spheres formation model and flow cytometry analysis. Then the effects of DAU on SH-SY5Y and T98-G cells were assessed by the MTT, colony formation, and tumor spheres formation model. DAU acts on Oct4 were verified using the Western blotting, MTT, and so on. Mechanistic studies were explored by siRNA transfection assay, Western blotting, and flow cytometry analysis. We identified that Shh effectively improved Oct4-mediated generation of stemness in SH-SY5Y and T98-G cells, and Oct4 and Shh co-activation promoted cell growth, the resistance of apoptosis. In addition, DAU, a natural product, was found to be able to attenuate Oct4/Shh co-activated stemness and induce cell cycle arrest and apoptosis via blocking AKT/ß-catenin signaling in neuroblastoma and glioblastoma, which contributed to the neuroblastoma and glioblastoma cells growth inhibition by DAU. In summary, our results indicated that the treatment of DAU may be served as a potential therapeutic method in neuroblastoma and glioblastoma.


Assuntos
Benzilisoquinolinas , Produtos Biológicos , Glioblastoma , Neuroblastoma , Tetra-Hidroisoquinolinas , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas Hedgehog/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Benzilisoquinolinas/farmacologia , Células-Tronco Neoplásicas , Proliferação de Células , Apoptose , Produtos Biológicos/farmacologia
9.
J Ethnopharmacol ; 321: 117560, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081396

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dauricine (DA) is a natural plant-derived alkaloid extracted from Menispermum dauricum. Menispermum dauricum has been used in traditional Chinese medicine as a classic remedy for rheumatoid arthropathy and is believed to be effective in alleviating swelling and pain in the limbs. AIM OF THE STUDY: Osteoarthritis (OA) is a classic degenerative disease involving chondrocyte death, and there is still a lack of effective therapeutic agents that can reverse the progression of the disease. Here we explored the therapeutic effects of DA against OA and further explored the mechanism. MATERIALS AND METHODS: The effect of DA on cell viability was assessed by CCK-8. IL-1ß-treated mouse chondrocytes were used as an in vitro model of OA, and apoptosis was detected by flow cytometry. QRT-PCR, western blotting, cell staining, and immunofluorescence were used to detect relevant inflammatory factors and cartilage-specific expression. RNA sequencing was used to identify pertinent signaling pathways. The therapeutic effect of DA was verified by micro-CT, histological analysis and immunohistochemical analysis in a mouse OA model. RESULTS: DA demonstrated a high safety profile on chondrocytes, significantly reversing the inflammatory response induced by IL-1ß, and promoting factors associated with cartilage regeneration. Moreover, DA exhibited a significant protective effect on the knee joints of mice undergoing ACLT-DMM, effectively preventing cartilage degeneration and subchondral bone tissue destruction. These positive therapeutic effects were achieved through the modulation of the NF-κB pathway and the Ca2+ signaling pathway by DA. CONCLUSION: Being derived from a traditional herb, DA exhibits remarkable therapeutic potential and safety in OA treatment, presenting a promising option for patients dealing with osteoarthritis.


Assuntos
Benzilisoquinolinas , Menispermum , Osteoartrite , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Condrócitos , Menispermum/metabolismo , Células Cultivadas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Benzilisoquinolinas/farmacologia , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Interleucina-1beta/metabolismo
10.
Virus Res ; 339: 199258, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37923171

RESUMO

African Swine Fever Virus (ASFV) infection causes an acute and highly contagious disease in swine, resulting in significant economic losses and societal harm worldwide. Currently, there are no effective vaccines or antiviral drugs available for ASFV. Tetrandrine (TET) is extracted from the traditional Chinese herb Stephania tetrandrae, possesses diverse biological functions such as anti-inflammatory, anti-tumor, and antiviral activities. The study comprehensively evaluated the anti-ASFV effect of TET and validated it through biological assays. The dose-dependent inhibition of TET against ASFV was confirmed and a novel mechanism of TET's anti-ASFV activity was elucidated. TET effectively inhibits ASFV during internalization by blocking macropinocytosis through the inhibition of the PI3K/Akt pathway. The specific inhibitor LY294002, targeting the PI3K/Akt pathway, exhibits similar antiviral activity against ASFV as TET. Furthermore, the inhibitory effect of TET against other viruses such as Lumpy Skin Disease Virus (LSDV) and Porcine Epidemic Diarrhea Virus (PEDV) was also identified. Our findings suggest that TET effectively inhibits ASFV and reveal the potential for broad-spectrum antiviral drugs targeting the PI3K/Akt pathway.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Benzilisoquinolinas , Internalização do Vírus , Animais , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Antivirais/farmacologia , Antivirais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Suínos , Benzilisoquinolinas/farmacologia , Internalização do Vírus/efeitos dos fármacos
11.
Int Immunopharmacol ; 125(Pt B): 111175, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976601

RESUMO

OBJECTIVE: Cepharanthine (CEP) is a drug candidate for tumor, viral infection, and some inflammatory diseases, but its effect on rheumatoid arthritis (RA) and the underlying mechanism are incompletely understood. METHODS: CEP was administered intraperitoneally to a collagen-induced arthritis (CIA) model. Joints went radiological and histological examination and serum cytokines were examined with cytometry-based analysis. M1 macrophages were induced from THP-1 cells or mouse bone marrow-derived macrophages with LPS and IFN-γ. Bulk RNA-seq was performed on macrophage undergoing M1-polarizatioin. Western blotting was applied to determine pathways involved in monocyte chemotaxis and polarization. Glycolysis metabolites were measured by chemiluminescence while glycolytic enzymes were examined by quantitative PCR. RESULTS: We found CEP significantly ameliorated synovial inflammation and joint destruction of CIA mice. It downregulated TNF-α levels in serum and in joints. The number of M1 macrophages were reduced in CEP-treated mice. In vitro, CEP inhibited monocyte chemotaxis to MCP-1 by downregulating CCR2 and reducing ERK1/2 signaling. Additionally, CEP suppressed M1 polarization of macrophages induced by LPS and IFN-γ. Genes involved in IFN-γ signaling, IL-6-JAK/STAT3 signaling, glycolysis, and oxidative phosphorylation process were downregulated by CEP. Several enzymes critically involved in glycolytic metabolism were suppressed by CEP, which resulted in reduced citrate in M1-polarizing macrophages. The inhibitory effect of CEP on macrophage polarization might be attributed to the blockage of TLRs-MyD88/IRAK4-IRF5 signaling pathway together with suppression of overactivated glycolytic metabolism in M1-polarizing macrophages. CONCLUSION: CEP attenuated joint inflammation by suppressing monocyte chemotaxis and proinflammatory differentiation. It has the potential to be developed into a complementary or alternative therapy for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Benzilisoquinolinas , Animais , Camundongos , Lipopolissacarídeos , Artrite Reumatoide/tratamento farmacológico , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Artrite Experimental/tratamento farmacológico , Inflamação
12.
Biomed Pharmacother ; 169: 115908, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37988849

RESUMO

The high expression of BLM (Bloom syndrome) DNA helicase in tumors involves its strong association with cell expansion. Bisbenzylisoquinoline alkaloids own an antitumor property and have developed as candidates for anticancer drugs. This paper aimed to study the antitumor effect of fangchinoline derivative HY-2 by targeting BLM642-1290 DNA helicase, and then explore its inhibitory mechanism on proliferation of MDA-MB-435 breast cancer cells. We confirmed that the mRNA and protein levels of BLM DNA helicase in breast cancer were higher than those in normal tissues. HY-2 could inhibit the DNA binding, ATPase and DNA unwinding of BLM642-1290 DNA helicase with enzymatic assay. HY-2 could also inhibit the DNA unwinding of DNA helicase in cells. In addition, HY-2 showed an inhibiting the MDA-MB-435, MDA-MB-231, MDA-MB-436 breast cancer cells expansion. The mRNA and protein levels of BLM DNA helicase in MDA-MB-435 cells increased after HY-2 treatment, which might contribute to HY-2 inhibiting the DNA binding, ATPase and DNA unwinding of BLM DNA helicase. The mechanism of HY-2 inhibition on BLM DNA helicase was further confirmed with the effect of HY-2 on the ultraviolet spectrogram of BLM642-1290 DNA helicase and Molecular dynamics simulation of the interacting between HY-2 and BLM640-1291 DNA helicase. Our study provided some valuable clues for the exploration of HY-2 in the living body and developing it as an anticancer drug.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Neoplasias da Mama , Feminino , Humanos , Benzilisoquinolinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , DNA/metabolismo , RecQ Helicases/química , RecQ Helicases/genética , RecQ Helicases/metabolismo , RNA Mensageiro , DNA Helicases/antagonistas & inibidores , DNA Helicases/metabolismo
13.
Antiviral Res ; 220: 105743, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949319

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2, lead to mild to severe respiratory illness and resulted in 6.9 million deaths worldwide. Although vaccines are effective in preventing COVID-19, they may not be sufficient to protect immunocompromised individuals from this respiratory illness. Moreover, novel emerging variants of SARS-CoV-2 pose a risk of new COVID-19 waves. Therefore, identification of effective antivirals is critical in controlling SARS and other coronaviruses, such as MERS-CoV. We show that Fangchinoline (Fcn), a bisbenzylisoquinoline alkaloid, inhibits replication of SARS-CoV, SARS-CoV-2, and MERS-CoV in a range of in vitro assays, by blocking entry. Therapeutic use of Fcn inhibited viral loads in the lungs, and suppressed associated airway inflammation in hACE2. Tg mice and Syrian hamster infected with SARS-CoV-2. Combination of Fcn with remdesivir (RDV) or an anti-leprosy drug, Clofazimine, exhibited synergistic antiviral activity. Compared to Fcn, its synthetic derivative, MK-04-003, more effectively inhibited SARS-CoV-2 and its variants B.1.617.2 and BA.5 in mice. Taken together these data demonstrate that Fcn is a pan beta coronavirus inhibitor, which possibly can be used to combat novel emerging coronavirus diseases.


Assuntos
Benzilisoquinolinas , COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Camundongos , Animais , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Pandemias , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico
14.
Mol Pharm ; 20(11): 5463-5475, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37823637

RESUMO

Nonsmall cell lung cancer (NSCLC) remains one of the leading causes of cancer-related death worldwide, posing a serious threat to global health. Tetrandrine (Tet) is a small molecule in traditional Chinese medicine with proven primary efficacy against multiple cancers. Although previous studies have demonstrated the potential anticancer effects of Tet on NSCLC, its poor water solubility has limited its further clinical application. Herein, a novel nanoparticle-based drug delivery system, platelet membrane (PLTM)-coated Tet-loaded polycaprolactone-b-poly(ethylene glycol)-b-polycaprolactone nanoparticles (PTeNPs), is proposed to increase the potency of Tet against NSCLC. First, tetrandrine nanoparticles (TeNPs) are created using an emulsion solvent evaporation method, and biomimetic nanoparticles (PTeNPs) are prepared by coating the nanoparticles with PLTMs. When coated with PLTMs, PTeNPs are considerably less phagocytized by macrophages than Tet and TeNPs. In addition, compared with Tet and TeNPs, PTeNPs can significantly inhibit the growth and invasion of NSCLC both in vitro and in vivo. With reliable biosafety, this drug delivery system provides a new method of sustained release and efficient anticancer effects against NSCLC, facilitating the incorporation of Tet in modern nanotechnology.


Assuntos
Benzilisoquinolinas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Portadores de Fármacos , Biomimética , Neoplasias Pulmonares/tratamento farmacológico , Benzilisoquinolinas/farmacologia
15.
Pharmacol Res ; 197: 106955, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820855

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies lacking effective therapies. KRAS mutations that occur in over 90% of PDAC are major oncogenic drivers of PDAC. The MAPK signaling pathway plays a central role in KRAS-driven oncogenic signaling. However, pharmacological inhibitors of the MAPK pathway are poorly responded in KRAS-mutant PDAC, raising a compelling need to understand the mechanism behind and to seek new therapeutic solutions. Herein, we perform a screen utilizing a library composed of 800 naturally-derived bioactive compounds to identify natural products that are able to sensitize KRAS-mutant PDAC cells to the MAPK inhibition. We discover that tetrandrine, a natural bisbenzylisoquinoline alkaloid, shows a synergistic effect with MAPK inhibitors in PDAC cells and xenograft models. Mechanistically, pharmacological inhibition of the MAPK pathway exhibits a double-edged impact on the TRAIL-death receptor axis, transcriptionally upregulating TRAIL yet downregulating its agonistic receptors DR4 and DR5, which may explain the limited therapeutic outcomes of MAPK inhibitors in KRAS-mutant PDAC. Of great interest, tetrandrine stabilizes DR4/DR5 protein via impairing ubiquitination-mediated protein degradation, thereby allowing a synergy with MAPK inhibition in inducing apoptosis in KRAS-mutant PDAC. Our findings identify a new combinatorial approach for treating KRAS-mutant PDAC and highlight the role of TRAIL-DR4/DR5 axis in dictating the therapeutic outcome in KRAS-mutant PDAC.


Assuntos
Benzilisoquinolinas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Morte Celular , Neoplasias Pancreáticas
16.
BMC Complement Med Ther ; 23(1): 386, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891552

RESUMO

BACKGROUND: Liensinine and neferine are the main bisbenzylisoquinoline alkaloids obtained from the seeds of Nelumbo nucifera, which commonly used as edible food and traditional medicine in Asia. It was reported that liensinine and neferine could inhibit the activities of acetylcholinesterase and cross the blood-brain barriers, suggesting their therapeutic potential for the management of Alzheimer's disease. METHODS: Here, we employed SH-SY5Y human neuroblastoma cells stably transfected with the human Swedish amyloid precursor protein (APP) mutation APP695 (APP695swe SH-SY5Y) as an in vitro model and transgenic Caenorhabditis elegans as an in vivo model to investigate the neuroprotective effects and underlying mechanism of liensinine and neferine. RESULTS: We found that liensinine and neferine could significantly improve the viability and reduce ROS levels in APP695swe SH-SY5Y cells, inhibit ß-amyloid and tau-induced toxicity, and enhance stress resistance in nematodes. Moreover, liensinine and neferine had obviously neuroprotective effects by assaying chemotaxis, 5-hydroxytryptamine sensitivity and the integrity of injured neurons in nematodes. Preliminary mechanism studies revealed that liensinine and neferine could upregulate the expression of autophagy related genes (lgg-1, unc-51, pha-4, atg-9 and ced-9) and reduce the accumulation of ß-amyloid induced autophagosomes, which suggested autophagy pathway played a key role in neuroprotective effects of these two alkaloids. CONCLUSIONS: Altogether, our findings provided a certain working foundation for the use of liensinine and neferine to treat Alzheimer's disease based on neuroprotective effects.


Assuntos
Alcaloides , Doença de Alzheimer , Benzilisoquinolinas , Neuroblastoma , Fármacos Neuroprotetores , Animais , Humanos , Caenorhabditis elegans , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Benzilisoquinolinas/farmacologia , Alcaloides/farmacologia , Animais Geneticamente Modificados , Autofagia
17.
Biochim Biophys Acta Gen Subj ; 1867(12): 130486, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813201

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) exhibits poor response to the present chemotherapeutic agents and frequently develops drug resistance. Finding novel anticancer drugs might enhance patient outcomes. Tiliacorinine, a bisbenzylisoquinoline alkaloid from the Thai medicinal plant Tiliacora triandra, effectively induced apoptosis of human CCA cell lines and inhibited tumor growth in mice. Here, we elucidate further the molecular mechanisms underlining the cytotoxicity of tiliacorinine and its implication in overcoming gemcitabine-resistance of CCA cells. METHODS: Cytotoxicity of tiliacorinine against CCA cell lines was assessed using MTT assay. The molecular signaling was determined using Western blot analysis. Molecular docking simulations were applied to predict the binding affinity and orientation of tiliacorinine to the possible binding site(s) of the target proteins. RESULTS: Tiliacorinine induced apoptotic cell death of CCA cells in a dose- and time-dependent manner. Tiliacorinine significantly suppressed the expression of anti-apoptotic proteins, Bcl-xL and XIAP; activated apoptotic machinery proteins, caspase-3, caspase-9, and PARP; and decreased the levels of pAkt and pSTAT3. EGF/EGFR activation model and molecular docking simulations revealed EGFR, Akt, and STAT3 as potent targets of tiliacorinine. Molecular docking simulations indicated a strong binding affinity of tiliacorinine to the ATP-binding pockets of EGFR, PI3K, Akt, JAK2, and SH2 domain of STAT3. Tiliacorinine could synergize with gemcitabine and restore the cytotoxicity of gemcitabine against gemcitabine-resistant CCA cells. CONCLUSION: Tiliacorinine effectively induced apoptosis via binding and blocking the actions of EGFR, Akt, and STAT3. GENERAL SIGNIFICANCE: Tiliacorinine is a novel multi-kinase inhibitor and possibly a potent anti-cancer agent, in cancers with high activation of EGFR.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Apoptose , Gencitabina , Antineoplásicos/farmacologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Receptores ErbB
18.
Pak J Pharm Sci ; 36(4): 1073-1077, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37599480

RESUMO

This investigation assessed the potential of cepharanthine (CEP), a compound from Stephania cepharantha Hayata, in mitigating atherosclerosis in a hyperlipidemic rat model. Using Wistar rats, four distinct diet and drug treatment groups were established: a high-fat high sucrose diet (HFHS), HFHS supplemented with intraperitoneal cepharanthine (HFHS-C) or oral atorvastatin (HFHS-A) from the 8th week, and a normal-fat diet (NFD). The study aimed to evaluate diet and drug impact on aortic histopathological changes over 16 weeks. Our results revealed significant atherosclerosis prevention in the aorta of the HFHS-C group, marked by preserved endothelial integrity, absence of inflammation, and lack of atherosclerotic plaques. Additionally, CEP demonstrated a crucial role in preventing the emergence of cholesterol clefts and foamy macrophages. These findings suggest that CEP effectively curbs atherosclerosis progression in hyperlipidemic rats, reducing arterial fat deposition and offering a potential natural preventative strategy against this disease.


Assuntos
Aterosclerose , Benzilisoquinolinas , Placa Aterosclerótica , Ratos , Animais , Ratos Wistar , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico
19.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446681

RESUMO

Cepharanthine, a natural bisbenzylisoquinoline (BBIQ) alkaloid isolated from the plant Stephania Cephalantha Hayata, is the only bisbenzylisoquinoline alkaloid approved for human use and has been used in the clinic for more than 70 years. Cepharanthine has a variety of medicinal properties, including signaling pathway inhibitory activities, immunomodulatory activities, and antiviral activities. Recently, cepharanthine has been confirmed to greatly inhibit SARS-CoV-2 infection. Therefore, we aimed to describe the pharmacological properties and mechanisms of cepharanthine, mainly including antitumor, anti-inflammatory, anti-pathogen activities, inhibition of bone resorption, treatment of alopecia, treatment of snake bite, and other activities. At the same time, we analyzed and summarized the potential antiviral mechanism of cepharanthine and concluded that one of the most important anti-viral mechanisms of cepharanthine may be the stability of plasma membrane fluidity. Additionally, we explained its safety and bioavailability, which provides evidence for cepharanthine as a potential drug for the treatment of a variety of diseases. Finally, we further discuss the potential new clinical applications of cepharanthine and provide direction for its future development.


Assuntos
Alcaloides , Benzilisoquinolinas , COVID-19 , Humanos , SARS-CoV-2 , Benzilisoquinolinas/farmacologia , Alcaloides/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico
20.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446748

RESUMO

Liver cancer continues to be a focus of scientific research due to its low five-year survival rate. One of its main core issues is the high metastasis of cells, for which there is no effective treatment. Neferine was originally isolated from Plumula nelumbinis and demonstrated to have a good antitumor effect. In order to extract high-purity Neferine in a more efficient and environmentally friendly manner, response surface methodology (RSM) was used to optimize the isolation and purification procedures in this study. The extract conditions of a 7:3 ratio for the eluent of dichloromethane: methanol, 1:60 for the mass ratio of the extract amount: silica gel, and 3 mL/min of the elution flow rate were shown to be the optimal conditions. These conditions resulted in the highest yield of 6.13 mg per 66.60 mg of starting material, with productivity of 8.76% and purity of 87.04%. Compared with the previous methods, this method can prepare Neferine in large quantities more quickly. We subsequently evaluated the antitumor activity of the purified Neferine against HepG2 hepatic cancer cells. The purified Neferine was found to inhibit the proliferation of HepG2 cells through the CCK-8 assay, with an IC50 of 33.80 µM in 24 h, 29.47 µM in 48 h, 24.35 µM in 72 h and 2.78 µM in 96 h of treatment. Neferine at a concentration of 3 µM could significantly inhibit the migration and invasion abilities of the HepG2 cells in vitro. We also explored the mechanism of action of Neferine via Western blot. We showed that Neferine could reduce RhoA expression by effectively inhibiting the phosphorylation of MYPT1, thereby effectively exerting anti-metastasis activity against HepG2 cells. Thus, we have optimized the isolation procedures for highly pure Neferine by response surface methodology (RSM) in this study, and purified Neferine is shown to play an essential role in the anti-metastasis process of liver cancer cells. The Neferine purification procedure may make a wide contribution to the follow-up development of other anti-metastasis lead compounds.


Assuntos
Benzilisoquinolinas , Neoplasias Hepáticas , Humanos , Células Hep G2 , Benzilisoquinolinas/farmacologia , Neoplasias Hepáticas/patologia , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...